Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Label-free in situ imaging of lignification in plant cell walls.

Identifieur interne : 003205 ( Main/Exploration ); précédent : 003204; suivant : 003206

Label-free in situ imaging of lignification in plant cell walls.

Auteurs : Martin Schmidt [États-Unis] ; Pradeep Perera ; Adam M. Schwartzberg ; Paul D. Adams ; P James Schuck

Source :

RBID : pubmed:21085100

Descripteurs français

English descriptors

Abstract

Meeting growing energy demands safely and efficiently is a pressing global challenge. Therefore, research into biofuels production that seeks to find cost-effective and sustainable solutions has become a topical and critical task. Lignocellulosic biomass is poised to become the primary source of biomass for the conversion to liquid biofuels. However, the recalcitrance of these plant cell wall materials to cost-effective and efficient degradation presents a major impediment for their use in the production of biofuels and chemicals. In particular, lignin, a complex and irregular poly-phenylpropanoid heteropolymer, becomes problematic to the postharvest deconstruction of lignocellulosic biomass. For example in biomass conversion for biofuels, it inhibits saccharification in processes aimed at producing simple sugars for fermentation. The effective use of plant biomass for industrial purposes is in fact largely dependent on the extent to which the plant cell wall is lignified. The removal of lignin is a costly and limiting factor and lignin has therefore become a key plant breeding and genetic engineering target in order to improve cell wall conversion. Analytical tools that permit the accurate rapid characterization of lignification of plant cell walls become increasingly important for evaluating a large number of breeding populations. Extractive procedures for the isolation of native components such as lignin are inevitably destructive, bringing about significant chemical and structural modifications. Analytical chemical in situ methods are thus invaluable tools for the compositional and structural characterization of lignocellulosic materials. Raman microscopy is a technique that relies on inelastic or Raman scattering of monochromatic light, like that from a laser, where the shift in energy of the laser photons is related to molecular vibrations and presents an intrinsic label-free molecular "fingerprint" of the sample. Raman microscopy can afford non-destructive and comparatively inexpensive measurements with minimal sample preparation, giving insights into chemical composition and molecular structure in a close to native state. Chemical imaging by confocal Raman microscopy has been previously used for the visualization of the spatial distribution of cellulose and lignin in wood cell walls. Based on these earlier results, we have recently adopted this method to compare lignification in wild type and lignin-deficient transgenic Populus trichocarpa (black cottonwood) stem wood. Analyzing the lignin Raman bands in the spectral region between 1,600 and 1,700 cm⁻¹, lignin signal intensity and localization were mapped in situ. Our approach visualized differences in lignin content, localization, and chemical composition. Most recently, we demonstrated Raman imaging of cell wall polymers in Arabidopsis thaliana with lateral resolution that is sub-μm. Here, this method is presented affording visualization of lignin in plant cell walls and comparison of lignification in different tissues, samples or species without staining or labeling of the tissues.

DOI: 10.3791/2064
PubMed: 21085100
PubMed Central: PMC3157855


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Label-free in situ imaging of lignification in plant cell walls.</title>
<author>
<name sortKey="Schmidt, Martin" sort="Schmidt, Martin" uniqKey="Schmidt M" first="Martin" last="Schmidt">Martin Schmidt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Energy Biosciences Institute, University of California, Berkeley, USA. mwbschmidt@berkeley.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Energy Biosciences Institute, University of California, Berkeley</wicri:regionArea>
<placeName>
<settlement type="city">Berkeley (Californie)</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Perera, Pradeep" sort="Perera, Pradeep" uniqKey="Perera P" first="Pradeep" last="Perera">Pradeep Perera</name>
</author>
<author>
<name sortKey="Schwartzberg, Adam M" sort="Schwartzberg, Adam M" uniqKey="Schwartzberg A" first="Adam M" last="Schwartzberg">Adam M. Schwartzberg</name>
</author>
<author>
<name sortKey="Adams, Paul D" sort="Adams, Paul D" uniqKey="Adams P" first="Paul D" last="Adams">Paul D. Adams</name>
</author>
<author>
<name sortKey="Schuck, P James" sort="Schuck, P James" uniqKey="Schuck P" first="P James" last="Schuck">P James Schuck</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:21085100</idno>
<idno type="pmid">21085100</idno>
<idno type="doi">10.3791/2064</idno>
<idno type="pmc">PMC3157855</idno>
<idno type="wicri:Area/Main/Corpus">003008</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003008</idno>
<idno type="wicri:Area/Main/Curation">003008</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003008</idno>
<idno type="wicri:Area/Main/Exploration">003008</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Label-free in situ imaging of lignification in plant cell walls.</title>
<author>
<name sortKey="Schmidt, Martin" sort="Schmidt, Martin" uniqKey="Schmidt M" first="Martin" last="Schmidt">Martin Schmidt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Energy Biosciences Institute, University of California, Berkeley, USA. mwbschmidt@berkeley.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Energy Biosciences Institute, University of California, Berkeley</wicri:regionArea>
<placeName>
<settlement type="city">Berkeley (Californie)</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Perera, Pradeep" sort="Perera, Pradeep" uniqKey="Perera P" first="Pradeep" last="Perera">Pradeep Perera</name>
</author>
<author>
<name sortKey="Schwartzberg, Adam M" sort="Schwartzberg, Adam M" uniqKey="Schwartzberg A" first="Adam M" last="Schwartzberg">Adam M. Schwartzberg</name>
</author>
<author>
<name sortKey="Adams, Paul D" sort="Adams, Paul D" uniqKey="Adams P" first="Paul D" last="Adams">Paul D. Adams</name>
</author>
<author>
<name sortKey="Schuck, P James" sort="Schuck, P James" uniqKey="Schuck P" first="P James" last="Schuck">P James Schuck</name>
</author>
</analytic>
<series>
<title level="j">Journal of visualized experiments : JoVE</title>
<idno type="eISSN">1940-087X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Wall (chemistry)</term>
<term>Cell Wall (metabolism)</term>
<term>Lignin (chemistry)</term>
<term>Lignin (metabolism)</term>
<term>Plants (chemistry)</term>
<term>Plants (metabolism)</term>
<term>Spectrum Analysis, Raman (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse spectrale Raman (méthodes)</term>
<term>Lignine (composition chimique)</term>
<term>Lignine (métabolisme)</term>
<term>Paroi cellulaire (composition chimique)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Plantes (composition chimique)</term>
<term>Plantes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Wall</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lignine</term>
<term>Paroi cellulaire</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Lignin</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Spectrum Analysis, Raman</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lignine</term>
<term>Paroi cellulaire</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse spectrale Raman</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Meeting growing energy demands safely and efficiently is a pressing global challenge. Therefore, research into biofuels production that seeks to find cost-effective and sustainable solutions has become a topical and critical task. Lignocellulosic biomass is poised to become the primary source of biomass for the conversion to liquid biofuels. However, the recalcitrance of these plant cell wall materials to cost-effective and efficient degradation presents a major impediment for their use in the production of biofuels and chemicals. In particular, lignin, a complex and irregular poly-phenylpropanoid heteropolymer, becomes problematic to the postharvest deconstruction of lignocellulosic biomass. For example in biomass conversion for biofuels, it inhibits saccharification in processes aimed at producing simple sugars for fermentation. The effective use of plant biomass for industrial purposes is in fact largely dependent on the extent to which the plant cell wall is lignified. The removal of lignin is a costly and limiting factor and lignin has therefore become a key plant breeding and genetic engineering target in order to improve cell wall conversion. Analytical tools that permit the accurate rapid characterization of lignification of plant cell walls become increasingly important for evaluating a large number of breeding populations. Extractive procedures for the isolation of native components such as lignin are inevitably destructive, bringing about significant chemical and structural modifications. Analytical chemical in situ methods are thus invaluable tools for the compositional and structural characterization of lignocellulosic materials. Raman microscopy is a technique that relies on inelastic or Raman scattering of monochromatic light, like that from a laser, where the shift in energy of the laser photons is related to molecular vibrations and presents an intrinsic label-free molecular "fingerprint" of the sample. Raman microscopy can afford non-destructive and comparatively inexpensive measurements with minimal sample preparation, giving insights into chemical composition and molecular structure in a close to native state. Chemical imaging by confocal Raman microscopy has been previously used for the visualization of the spatial distribution of cellulose and lignin in wood cell walls. Based on these earlier results, we have recently adopted this method to compare lignification in wild type and lignin-deficient transgenic Populus trichocarpa (black cottonwood) stem wood. Analyzing the lignin Raman bands in the spectral region between 1,600 and 1,700 cm⁻¹, lignin signal intensity and localization were mapped in situ. Our approach visualized differences in lignin content, localization, and chemical composition. Most recently, we demonstrated Raman imaging of cell wall polymers in Arabidopsis thaliana with lateral resolution that is sub-μm. Here, this method is presented affording visualization of lignin in plant cell walls and comparison of lignification in different tissues, samples or species without staining or labeling of the tissues.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21085100</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>12</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1940-087X</ISSN>
<JournalIssue CitedMedium="Internet">
<Issue>45</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of visualized experiments : JoVE</Title>
<ISOAbbreviation>J Vis Exp</ISOAbbreviation>
</Journal>
<ArticleTitle>Label-free in situ imaging of lignification in plant cell walls.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.3791/2064</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">2064</ELocationID>
<Abstract>
<AbstractText>Meeting growing energy demands safely and efficiently is a pressing global challenge. Therefore, research into biofuels production that seeks to find cost-effective and sustainable solutions has become a topical and critical task. Lignocellulosic biomass is poised to become the primary source of biomass for the conversion to liquid biofuels. However, the recalcitrance of these plant cell wall materials to cost-effective and efficient degradation presents a major impediment for their use in the production of biofuels and chemicals. In particular, lignin, a complex and irregular poly-phenylpropanoid heteropolymer, becomes problematic to the postharvest deconstruction of lignocellulosic biomass. For example in biomass conversion for biofuels, it inhibits saccharification in processes aimed at producing simple sugars for fermentation. The effective use of plant biomass for industrial purposes is in fact largely dependent on the extent to which the plant cell wall is lignified. The removal of lignin is a costly and limiting factor and lignin has therefore become a key plant breeding and genetic engineering target in order to improve cell wall conversion. Analytical tools that permit the accurate rapid characterization of lignification of plant cell walls become increasingly important for evaluating a large number of breeding populations. Extractive procedures for the isolation of native components such as lignin are inevitably destructive, bringing about significant chemical and structural modifications. Analytical chemical in situ methods are thus invaluable tools for the compositional and structural characterization of lignocellulosic materials. Raman microscopy is a technique that relies on inelastic or Raman scattering of monochromatic light, like that from a laser, where the shift in energy of the laser photons is related to molecular vibrations and presents an intrinsic label-free molecular "fingerprint" of the sample. Raman microscopy can afford non-destructive and comparatively inexpensive measurements with minimal sample preparation, giving insights into chemical composition and molecular structure in a close to native state. Chemical imaging by confocal Raman microscopy has been previously used for the visualization of the spatial distribution of cellulose and lignin in wood cell walls. Based on these earlier results, we have recently adopted this method to compare lignification in wild type and lignin-deficient transgenic Populus trichocarpa (black cottonwood) stem wood. Analyzing the lignin Raman bands in the spectral region between 1,600 and 1,700 cm⁻¹, lignin signal intensity and localization were mapped in situ. Our approach visualized differences in lignin content, localization, and chemical composition. Most recently, we demonstrated Raman imaging of cell wall polymers in Arabidopsis thaliana with lateral resolution that is sub-μm. Here, this method is presented affording visualization of lignin in plant cell walls and comparison of lignification in different tissues, samples or species without staining or labeling of the tissues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Energy Biosciences Institute, University of California, Berkeley, USA. mwbschmidt@berkeley.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perera</LastName>
<ForeName>Pradeep</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schwartzberg</LastName>
<ForeName>Adam M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Paul D</ForeName>
<Initials>PD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schuck</LastName>
<ForeName>P James</ForeName>
<Initials>PJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D059040">Video-Audio Media</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>11</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Vis Exp</MedlineTA>
<NlmUniqueID>101313252</NlmUniqueID>
<ISSNLinking>1940-087X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013059" MajorTopicYN="N">Spectrum Analysis, Raman</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21085100</ArticleId>
<ArticleId IdType="pii">2064</ArticleId>
<ArticleId IdType="doi">10.3791/2064</ArticleId>
<ArticleId IdType="pmc">PMC3157855</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Planta. 2009 Aug;230(3):589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19526248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 May 14;395(4):521-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20394731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Feb 20;17(4):R115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):233-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18468479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Oct;224(5):1141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16761135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):557-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Feb 8;227(4687):636-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17781824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Jul;24(7):755-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16841053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(4):559-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489138</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Berkeley (Californie)</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Adams, Paul D" sort="Adams, Paul D" uniqKey="Adams P" first="Paul D" last="Adams">Paul D. Adams</name>
<name sortKey="Perera, Pradeep" sort="Perera, Pradeep" uniqKey="Perera P" first="Pradeep" last="Perera">Pradeep Perera</name>
<name sortKey="Schuck, P James" sort="Schuck, P James" uniqKey="Schuck P" first="P James" last="Schuck">P James Schuck</name>
<name sortKey="Schwartzberg, Adam M" sort="Schwartzberg, Adam M" uniqKey="Schwartzberg A" first="Adam M" last="Schwartzberg">Adam M. Schwartzberg</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Schmidt, Martin" sort="Schmidt, Martin" uniqKey="Schmidt M" first="Martin" last="Schmidt">Martin Schmidt</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003205 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003205 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21085100
   |texte=   Label-free in situ imaging of lignification in plant cell walls.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21085100" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020